

2 August 2022

Clinical Conversation: Optimising hyper-acute stroke care

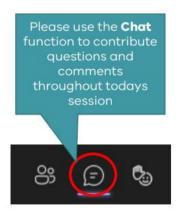
Stroke Clinical Network

Hosted by A/Prof Ben Clissold, Stroke Clinical Lead, Safer Care Victoria

Acknowledgement of Country

I acknowledge the Traditional Custodians who have lived and loved this country through the vastness of time.

I honour the Bunurong People, whose country I stand on today. I pay my respects to the old people, to the Elders and Ancestors who are the safekeepers and caretakers of the oldest living culture on the planet.


For this is the very bedrock of this place, our shared home and our special identity in the world and the source of shared pride as Australians.

For this land always was, and always will be, Aboriginal Land.

Artwork by Anmatyerr woman, Tradara Briscoe

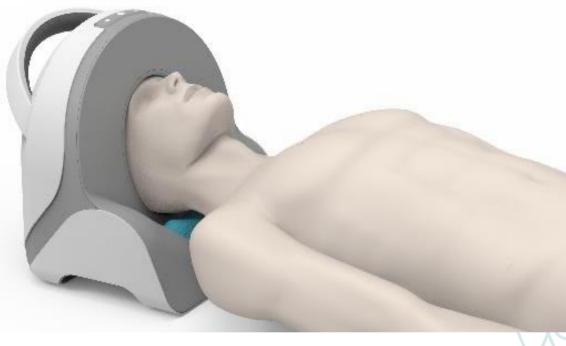
Before we begin

This session will be recorded and made available on the SCV website and sent to Network members

Streamlining pathway to reperfusion: Pre-hospital

Skye Coote

Nurse Practitioner; Nursing Lead Melbourne Mobile Stroke Unit



Stroke Capable Ambulances

Non-MSU ambulances

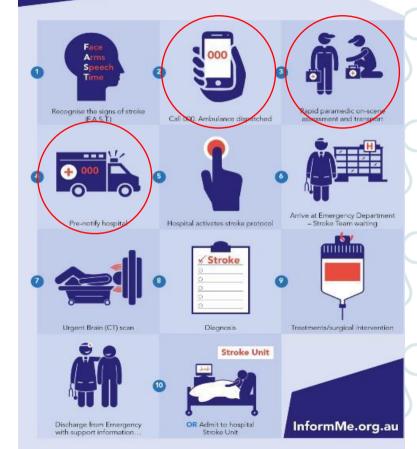
Code Stroke processes reduce Door-Needle times

Helsinki measures reduced DTN times to 20 mins (median)

Implemented at the RMH

Reduced DTN times to 25 mins

Largely accepted and implemented in stroke capable hospitals


Table 1 Twelve m	easures to reduce treatment delays	
Measure	Description	Year
EMS involvement	Education of dispatchers and EMS personnel, stroke high-priority dispatch	1998
Hospital prenotification	EMS contacts stroke physician directly via mobile phone	2001
Alarm and preorder of tests	Laboratory and CT computer-ordered and alarmed at prenotification	2001
No-delay CT interpretation	Stroke physician interprets the CT scan, not waiting for formal radiology report	2001
Premixing of tPA	With highly suspect thrombolysis candidates, tPA premixed prior to patient arrival	2002
Delivery of tPA on CT table	Bolus administered on CT table	2002
CT relocated to ER	Patient transfers of several hundred meters, including elevators, were no longer needed	2003
CT priority and CT transfer	CT emptied prior to patient arrival, and patient transferred straight onto CT table, not ER bed	2004
Rapid neurologic evaluation	Patient is examined upon arrival, on CT table	2004
Preacquisition of history	Statewide electronic patient records and eyewitness interview before/during transportation	2005
Point-of-care INR	Laboratory personnel draw blood while patient on CT table, and perform instant POC INR	2005
Reduced imaging	While all patients have a CT, advanced imaging reserved for unclear cases only	2005

Neurology. 2012 Jul 24;79(4):306-13. Neurology. 2013 Sep;81(12):1071-1076

Table 1 Twelve measures to reduce treatment delays			
Measure	Description	Year	
EMS involvement	Education of dispatchers and EMS personnel, stroke high-priority dispatch	1998	
Hospital prenotification	EMS contacts stroke physician directly via mobile phone	2001	
Alarm and preorder of tests	Laboratory and CT computer-ordered and alarmed at prenotification	2001	
No-delay CT interpretation	Stroke physician interprets the CT scan, not waiting for formal radiology report	2001	
Premixing of tPA	With highly suspect thrombolysis candidates, tPA premixed prior to patient arrival	2002	
Delivery of tPA on CT table	Bolus administered on CT table	2002	
CT relocated to ER	Patient transfers of several hundred meters, including elevators, were no longer needed	2003	
CT priority and CT transfer	CT emptied prior to patient arrival, and patient transferred straight onto CT table, not ER bed	2004	
Rapid neurologic evaluation	Patient is examined upon arrival, on CT table	2004	
Preacquisition of history	Statewide electronic patient records and eyewitness interview before/during transportation	2005	
Point-of-care INR	Laboratory personnel draw blood while patient on CT table, and perform instant POC INR	2005	
Reduced imaging	While all patients have a CT, advanced imaging reserved for unclear cases only	2005	

Ten Critical Steps in Early Stroke Management

Pre-hospital management

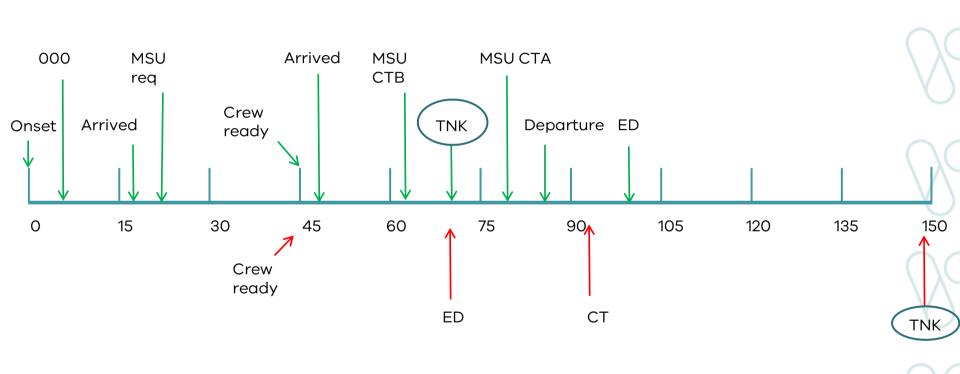
Notification

- Patient name
- Patient age
- Onset time
- Presenting symptoms
- Key medical or medication history
 - Anticoagulants
 - Residential aged care
 - Major surgery

Observations

- Only if abnormal or noteworthy
- GCS can be an immediate indicator of localisation coupled with symptoms

Pre-hospital notification is associated with improved outcomes


Table 1. Baseline characteristics of intravenous r-tissue plasminogen activator treated patients regarding prehospital notification status.

prenospital notification status.					
Characteristics		Prehospital notification		p-value	
		Yes (n D 131)	No (n D 115)		
Age, years and median (IQR)		67 (58–75)	66 (55–77)	0.274	
Male, n (%)		66 (57.4%)	72 (55.0%)	0.702	
Baseline National Institutes of Health Stroke Scale, median (IQR) Onset to emergency department arrival time (min)		,	11 (7.5–17)	<0.001 0.462	
			78 (50–120)		
Door-to-CT time, min and median (IQR)		15 (10–25)	25 (18–45)	<0.001	
Door-to-needle time, min, median (IQR)		42 (34–56)	70 (53–95)	<0.001	
	Prenotification ($n = 727$)		No prenotification ($n = 201$)		<i>p</i> -value
Total prehospital time, median	22.5 (18.5–26.0)		22 (17.5–26.5)		0.433
	12 (100 100)		10 (130 310)		

	Prenotification ($n = 727$)	No prenotification ($n = 201$)	<i>p</i> -value
Total prehospital time, median	22.5 (18.5–26.0)	22 (17.5–26.5)	0.433
Door to CT time, median	13 (10.0–18.0)	19 (13.0–34.0)	< 0.001
Door to CT time ≤ 25 min	660 (90.8 %)	125 (62.2 %)	< 0.001
Door to needle time, median	63 (49.0–79.0)	68 (54.0–86.0)	0.138
Door to needle time ≤ 60 min	65 (45.1 %)	7 (28.0 %)	0.110
Administering thrombolytic therapy	144 (19.8 %)	25 (12.4 %)	0.017

	Total (n=252)	Hotline group (n=218)	Non-hotline group (n=34)	P value	
Primary outcome					
Good neurological outcome at 90 days, n (%)	102 (40.5)	94 (43.1)	8 (23.5)	0.030	
Secondary outcomes					
Hospital arrival to t-PA time ^a , median (IQR), min	31 (24 to 41)	30 (24 to 38)	48 (37 to 65)	< 0.001	
Hospital arrival to groin puncture time, median (IQR), min	42 (33 to 57)	40 (32 to 54)	76 (50 to 97)	< 0.001	
Hospital arrival to recanalization time, median (IQR), min	90 (69 to 136)	88 (67 to 127)	121 (83 to 176)	0.003	
t-PA use, n (%)	141 (56.0)	127 (58.3)	14 (41.2)	0.062	
Successful recanalization (modified TICl2b-3), n (%)	225 (89.3)	193 (88.5)	32 (94.1)	0.33	

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine (2016) 24:57 Scientific Reports |

78 mins faster

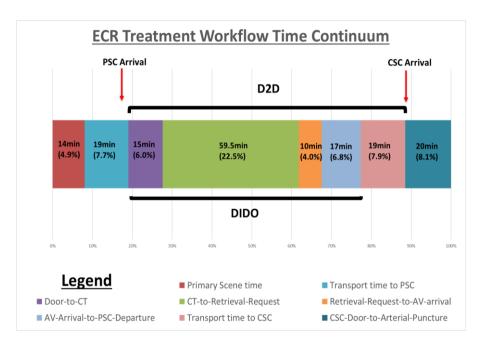
Streamlining pathway to reperfusion: Emergency department

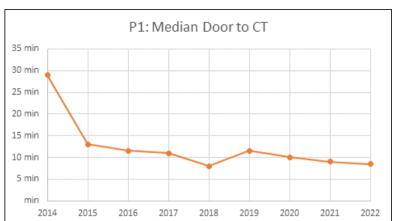
Dr Philip Choi & Tanya Frost

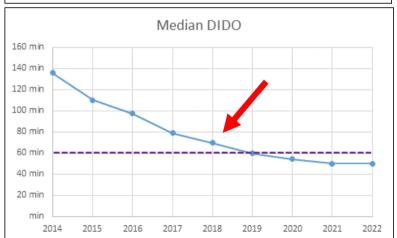
Head of stroke services, Eastern Health

Acute stroke nurse, Eastern Health

2017

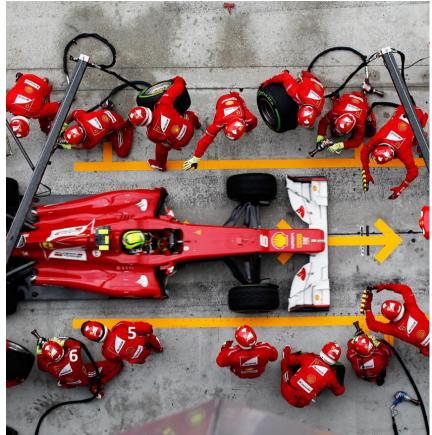

Door-in-Door-out time:


U.S: 104.5 mins



Running time of Finding Nemo is...

Continued on Page 4



Ross Cody, unpublished

QI Activities

CT – Images, transfer, length of time

Workflow- codes - roles/CT/ASU/Ambulance

Triage Processes-flow chart

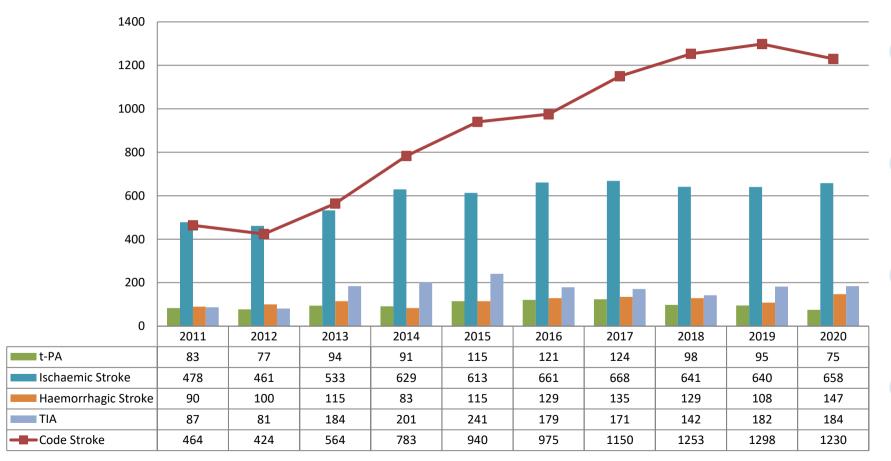
Code Stroke Forms

Feedback of KPI's-ED, ward, management

Monitor for themes

Know your data

Team Consistency


Communication- right people right room

Review of practice: Know your IQR

Expectations of excellence

Continuous quality improvement – how long does it really take?

Stroke Service 2011-2020

Thrombolysis beyond 4.5 hours and Thrombectomy beyond 6 hours of stroke onset

Professor Henry Ma

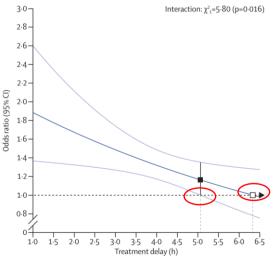
Director of Neurology, Head, Stroke Unit, Monash Health

Professor, Department of Medicine, Monash University

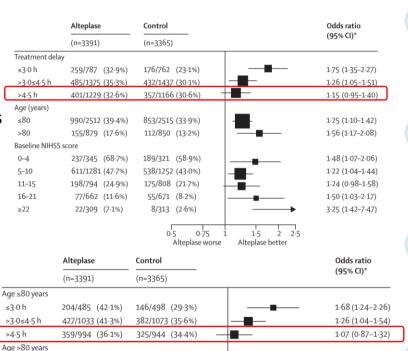
Acute Reperfusion Therapy

 Acute ischemic stroke is due to occlusion of the vessel(s) supplying the brain

• The concept of Ischemic Penumbra – salvage the brain


• Time is Brain – need to open up the vessel as soon as possible

Thrombolysis < 4.5 hours from Stroke Onset


NINDS =< 3 hours of stroke onset

ECASS 3 3 – 4.5 hours of stroke onset

Emberson et al 9 tPA clinical trials analysis

Used noncontrast CT Brain to assess patients

Excellent Clinical outcome mRS 0-1

OFFICIAL

≤3.0 h

>3·0≤4·5 h

55/302 (18-2%)

58/342 (17.0%)

42/235 (17.9%)

Excellent Clinical outcome mRS 0-1

0.75 1.00

Alteplase worse

1.50 2.00 2.50

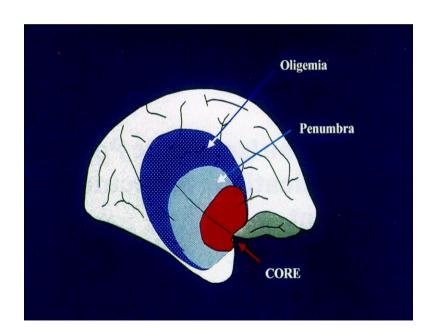
Alteplase better

1.86 (1.11-3.13)

1.36 (0.87-2.14)

1.55 (0.90-2.65)

30/264 (11.4%)


50/364 (13.7%)

32/222 (14.4%)

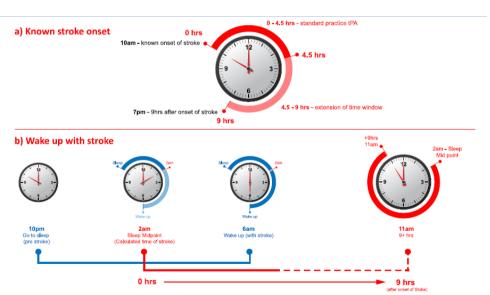
Extending the re-perfusion time window Enriched Cohort The principle – the ischemic penumbra

 Identify patient with the ischemic penumbra and salvage it

 Patients without the ischemic penumbra are less likely to benefit from reperfusion therapy

Baron JC. Cerebrovas Dis 1999;9:193-201 Fig1

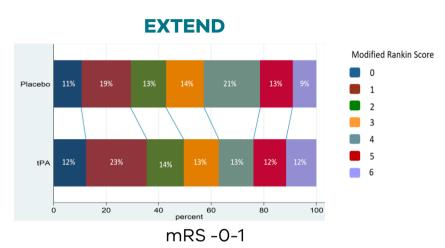
Thrombolysis 4.5 – 9 Hours from stroke onset and Wake Up Stroke – Perfusion imaging


CT Perfusion CBF (<30%) volume: 4.2 ml Perfusion (Tmax>6.0s) volume: 77.1 ml Mismatch volume: 72.9 ml Mismatch ratio: 18.4 CBF (<30%) volume: 176.1 ml Perfusion (Tmax>6.0s) volume: 257.6 ml Mismatch volume: 81.5 ml Mismatch ratio: 1.5

Penumbra 🛑 Core

Aim to identify penumbral tissues (Benefit) and core (risk)

Thrombolysis 4.5 – 9 Hours from stroke onset and Wake Up Stroke – Perfusion imaging



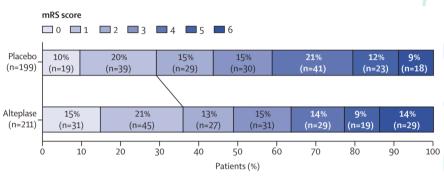
RAPID* automated CT perfusion or MR perfusion

- Penumbral mismatch criteria
 - 1. Hypoperfusion to core volume ratio> 1.2
 - 2. Perfusion lesion core absolute difference >10 ml
 - 3.Ischaemic core lesion volume ≤70 ml

Need to have a clinically relevant penumbra

Thrombolysis 4.5 – 9 Hours from stroke onset and Wake Up Stroke – Perfusion imaging

Adjusted Relative Risk **1.44** (95%C.I. 1.01, 2.06) **P=0.04**


Death at 90 days

Adjusted Relative Risk: 1.17 (CI 0.57, 2.4) p=0.67

Symptomatic Intracranial Haemorrhage at 36 hours

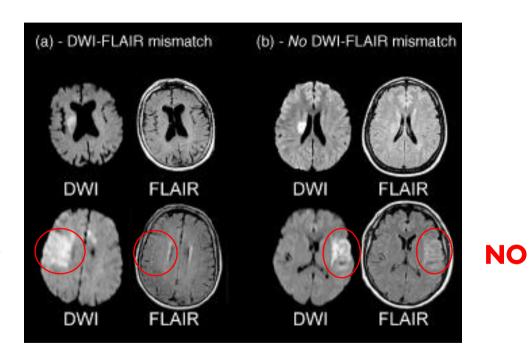
Adjusted Relative Risk 7.22 (CI 0.97, 53.54) p = 0.053

Pooled Analysis: EXTEND EPITHET ECASS 4

mRS 0-1

36% vs 29% adjusted OR 1.86 (95% CI 1.15 – 2.99) P=0.011

Death at 90 days

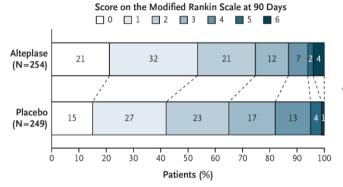

•Odd Ratio 1.55 (CI 0.81, 2.97) p=0.19

Symptomatic Intracranial Haemorrhage at 36 hours

•Odd Ratio 9.70 (CI 1.23, 76.55)

p = 0.03

Stroke with unknown time of onset DWI:FLAIR Mismatch

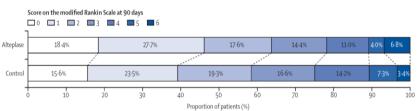

YES

DWI-FLAIR Mismatch

Stroke with unknown time of onset

WAKE UP

Within 4.5hour of wake up with symptoms or found to have symptoms but the exact time of onset unclear


Favourable outcome 0-1 mRS

53.3% vs 41.8% aOR 1.61 p=0.02

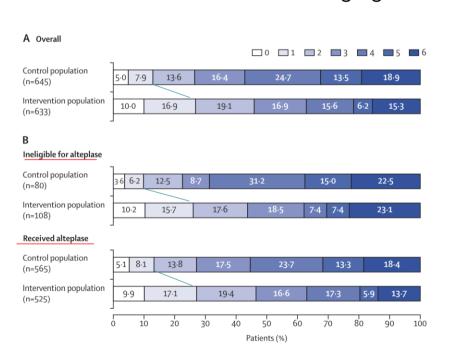
Symptomatic ICH

Adjusted Odd Ratio 4.95 (0.57-42.87) p=0.15

EOS pooled analysis of WAKEUP, EXTEND, THAWS, ECASS4 and MR Witness

Favourable outcome 0-1 mRS

Adjusted Odd Ratio 1.49 (1.1-2.03) p=0.011


Symptomatic ICH

Adjusted Odd Ratio 5.58 (1.22-25.05) p=0.024

Thrombectomy < 6 Hours

HERMES: 5 trials EXTEND IA, ESCAPE, MR CLEAN, SWIFT PRIME, REVASCAT

Stroke onset within 12 hours (imaging selection used in < 6 hours)

mRS 0-1 (Excellent Functional Outcome)

Control 12.9% Intervention 26.9%

Adjusted odds ration 2.72 (1.99-3.71) P < 0.0001

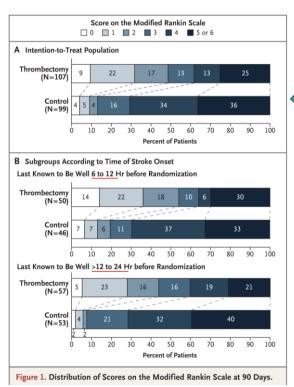
Symptomatic ICH

Control 4.3% Intervention 4.4%

Adjusted odds ratio 1.07 (0.62-1.84) p = 0.81

Mortality

Control 15.3% Intervention 18.9%


Adjusted odds ratio 0.732 (0.47-1.13) p=0.16

Thrombectomy 6 - 24 hours

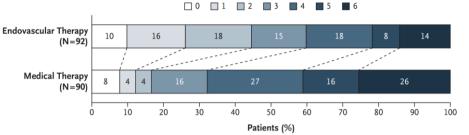
DEFUSE 3

Score on Modified Rankin Scale

DAWN

DAWN

Based on clinical severity and infarct volume mismatch based on aged group (80 yo younger or older)


DEFUSE 3

6-16 hours

Based on Perfusion mismatch (RAPID)

Infarct < 70ml

Mismatch ratio 1.8

DEFUSE 3

mRS 0-2

45% vs 17% p<0.001

Mortality 90 days

14% vs 26% p=0.05

Symptomatic ICH

7% vs 4% p=0.75

DAWN

Mean score of utility weighted mRS 90 days

5.5 vs 3.4

Symptomatic ICH

6% vs 3% p=0.5

Mortality 90 days

19% vs 18% p=1

Summary: NSF Guideline for extended time window

Thrombolysis

Strong recommendation

For patients with potentially disabling ischaemic stroke who meet <u>perfusion mismatch</u> criteria in addition to standard clinical criteria, intravenous alteplase (dose of 0.9 mg/kg, maximum of 90 mg) should be administered up to 9 hours after the time the patient was last known to be well, or from the <u>midpoint of sleep for patients who wake with stroke</u> symptoms, unless immediate endovascular thrombectomy is planned. (Ma et al 2019 [64], Campbell et al 2019 [58])

Weak recommendation

For patients with potentially disabling ischaemic stroke of unknown onset time who meet MRI FLAIR-diffusion mismatch criteria in addition to standard clinical criteria, intravenous alteplase (dose of 0.9 mg/kg, maximum of 90 mg) may be administered (Thomalla et al 2019 [61]).

Thrombectomy

Strong recommendation

For patients with ischaemic stroke caused by a large vessel occlusion in the internal carotid artery, proximal middle cerebral artery (M1 segment), or with tandem occlusion of both the cervical carotid and intracranial large arteries, endovascular thrombectomy should be undertaken when the procedure can be commenced between 6-24 hours after they were last known to be well if clinical and CT perfusion or MRI features indicate the presence of salvageable brain tissue. (Nogueira et al. 2017 [71], Albers et al. 2018 [72])

Questions need to be answered....

NSF Guideline

In selected stroke patients with occlusion of the basilar artery, endovascular thrombectomy should be undertaken. (Kumar et al. 2015 [86])

Posterior Circulation stroke

- Recent presentation at ESOC
- ATTENTION:
 - Chinese study within 12 hours of basilar artery occlusion
 - Thrombectomy vs best medical therapy (46% vs 23%)
 - Thrombectomy better functional outcome and lower mortality
 - Awaiting full publication

Thrombolysis beyond 9 hours

ETERNAL – up to 24 hours from stroke onset using TNK and perfusion selection in patients with large vessel occlusion

ETERNAL POSTERIOR

Thrombectomy in more distal vessels (Distal M2 and beyond)

A number of clinical trials underway

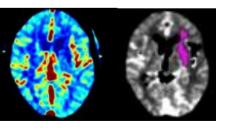
Large Infarct Core for thrombectomy

Ongoing trials

OFFICIAL

Thrombolytic eligibility and complications

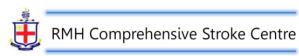
Prof Bruce Campbell


Director of Neurology & Stroke

Royal Melbourne Hospital

Victorian Stroke Telemedicine Neurologist, Ambulance Victoria

Professor of Neurology, University of Melbourne


Chair of Clinical Council, Stroke Foundation, Australia

Outline

- Standardising & simplifying thrombolytic eligibility
- Role of lytics before thrombectomy
- Complications
 - symptomatic haemorrhagic transformation
 - malignant cerebral oedema
 - orolingual angioedema
- Primary ICH
- Concluding remarks

Thrombolytic Indications and Contraindications

Indications:

last known well <4.5h or CTP-selected for 4.5-9hr/WUS

potentially disabling deficit and potential quality of life benefit

Contraindications:

hemorrhage on CT brain

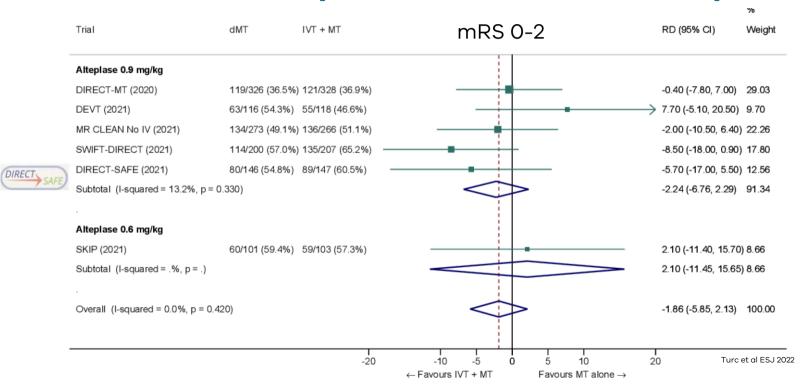
extensive hypodensity on CT brain (subacute infarct) – re-check onset time

recent/active bleeding, surgery or trauma – risk vs benefit, may be suitable for

thrombectomy

irreversible anticoagulants

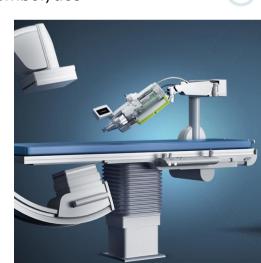
BP >185/105 or BSL <2.7mmol/L – fix then treat


Thrombolytic Contraindications - detail

- Previous hemorrhage?
 - -subdural many years ago generally OK if scan normal now
- Aneurysm/AVM?
 - -unruptured, incidental limited experience but thought not to be a contraindication
 - -clipped or coiled in past regarded as secured
- Brain tumour?
 - -meningioma not a problem
 - -glioma/metastases can bleed contraindication
- Recent/active bleeding, surgery or trauma risk vs benefit, IVT vs EVT compressible sites are OK (e.g. skin lesions) cataract surgery avascular OK joint surgery d/w ortho, often comfortable to lyse (may need to wash out) abdo/chest riskier LP/epidural or non-compressible arterial puncture 1 week?

Thrombolytic Contraindications - detail

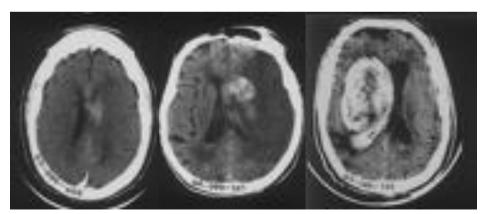
- DVT prevention dose of enoxaparin OK, therapeutic is not;
- INR <=1.7 OK, platelets <100 unknown, DOACS<48h evolving
- aortic dissection contraindication
- cervical artery dissection OK
- known infective endocarditis contraindication
- non-STEMI OK
- STEMI probably OK d/w cardiology, highest risk rupture after anterior STEMI
- Pregnancy OK (risk is placental bleed), post-partum uncertain –consult O&G
- Menstruation OK
- Lactation no issue (but other factors may warrant pause)


Do we still need lytic before thrombectomy?

OFFICIAL

Why IV thrombolytics are still important before thrombectomy?

- "Direct" trials only enrolled patients at EVT centres (not applicable to transfers)
 - EVT is still restricted to major metro centres
- "Direct" trials used alteplase and delayed treatment compared to standard care but even so did not demonstrate non-inferiority and final reperfusion consistently better with thrombolytics
 - Tenecteplase may be more effective, improved outcomes
- Early (pre-hospital) thrombolysis in MSU appears more effective
- "Cardiac paradigm" argument?
 - Workflow is still slow compared to STEMI and revascularization outcomes imperfect
 - Stroke is mostly embolic if the clot dissolves the underlying artery is often normal, no further Tx required



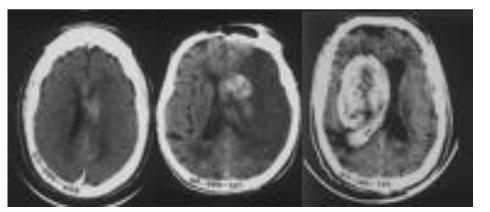
OFFICIAL

Complications after lytics

Neurological deterioration

- Bleeding
- Reocclusion/recurrent embolism

Angioedema



Blood Pressure targets

- Ask why BP is elevated?
- Raised ICP, pain, retention...

Complications after thrombectomy

- Neurological deterioration
 - Bleeding
 - Reocclusion/recurrent embolism

- Puncture site
 - Bleeding external, retroperitoneal
 - Ischemic limb
- Hyperperfusion post-sent
- Hypotension post-sent
- Blood pressure targets
 - Ask why BP is elevated?
 - Raised ICP, pain, retention...

Recognising deterioration

- Increased limb weakness
 - -aim to have "NIHSS" style assessment (10sec UL drift, 5sec LL drift)
 - -changes from flexion to extension less meaningful
- Aphasia questions and commands, naming
- Reduced conscious state
- Headache and vomiting
- BP changes

Symptomatic ICH

- Tends to occur a few hours after lysis (median 5-10h) but within 24h unless anticoagulated too early
- Most deterioration during the infusion is not ICH but stop and re-scan, if no blood think why?
 - -?recurrent embolism
 - -?collateral failure
 - -?hypoperfusion

- Check fibrinogen/coags
- Consider cryoprecipitate and tranexamic acid
- Fibrinogen usually back to normal after a few hours
- Mostly supportive care

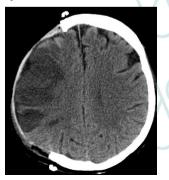
AHA/ASA Scientific Statement

Treatment and Outcome of Hemorrhagic Transformation
After Intravenous Alteplase in Acute Ischemic Stroke
A Scientific Statement for Healthcare Professionals From the American

A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association

Orolingual Angioedema

- Tends to occur during or immediately after the infusion ~2% patients (~5% if ACEI vs 1.5% not taking ACEI) 15-105min post-bolus, mean 70min post-bolus
- More common if ACEI (bradykinin mediated)
- Usually unilateral tongue/lip on side opposite affected hemisphere
- Hydrocortisone
- Consider icatibant (bradykinin inhibitor)
- Rarely requires intubation



Malignant cerebral oedema

- Tends to peak day 3-5 after ischemic stroke but can occur within 24h, particularly after reperfusion
- Large middle cerebral artery territory infarcts
- Large PICA cerebellar infarcts

- Watch for reduced conscious state but that can go off rapidly
- Increasing BP concerning
- Serial imaging in those at risk
- Consider hemicraniectomy or posterior fossa decompression
- Early discussion with Neurosurgery

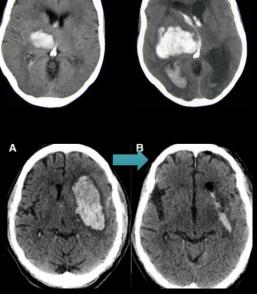
Post-carotid endarterectomy care

- Cranial nerve injury tongue, vocal cord
- Neck hematoma airway risk
- Hyperperfusion risk ICH control BP
- Post-op stroke

Can we effectively treat intracerebral haemorrhage?

Hematoma growth occurs early & larger ICH = worse outcome


Hemostatic agents ?tranexamic acid (STOP-MSU) ?rVIIa Minimally invasive surgery


Aim of early surgery = prevent haematoma expansion and

toxicity related to thrombin and iron

Pitfalls of previous surgical trials: too late, too disruptive to normal brain, insufficiently effective haematoma removal

Conclusions

- Rapid reperfusion remains the proven treatment paradigm in ischemic stroke
 - Thrombectomy is highly effective in a broad range of patients 0-6h and more selected patients >6h (boundaries of efficacy still expanding)
 - Thrombolytics remain the foundation of reperfusion in stroke (including before thrombectomy) and are particularly effective when given pre-hospital in an MSU
 - 0-4.5h broad criteria, 4.5-9h/wake-up stroke perfusion mismatch selection
- Intracerebral hemorrhage remains challenging but there are promising treatments in trials
- Simply delivering thrombolytics (ideally pre-hospital) & thrombectomy faster and increasing access to appropriate patients is essential to maximise effectiveness
 - focus on systems of care, including pre-hospital
 - simplified and consistent protocols, understanding potential complications

www.informme.org.au

InformMe

i About InformMe

Sign in

Guidelines

Learning & resources

Stroke data

Collaboration

Improving care

Search

Q

Has their FACE drooped?

Can they lift both ARMS?

Is their

SPEECH
slurred and do they
understand you?

Call 000,

is critical

Stroke

If you see any of these symptoms

Act FAST call 000

PANEL:

Questions & Comments

Let's take a poll

